123 research outputs found

    Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications

    Get PDF
    Current methods for preparing magnetic composites with carbon nanotubes (MCNT) commonly include extensive use of treatment with strong acids and result in massive losses of carbon nanotubes (CNTs). In this study we explore the potential of taking advantage of the inherent magnetic properties associated with the metal (alloy or oxide) incorporated in CNTs during their production. The as-received CNTs are refined by applying a permanent magnet to a suspension of CNTs to separate the high-magnetic fraction; the low-magnetic fraction is discarded with the solvent. The collected MCNTs were characterized by a suite of 10 diffraction and spectroscopic techniques. A key discovery is that metallic nano-clusters of Fe and/or Ni located in the interior cavities of the nanotubes give MCNTs their ferromagnetic character. After refinement using our method, the MCNTs show saturation magnetizations up to 10 times that of the as-received materials. In addition, we demonstrate the ability of these MCNTs to repeatedly remove atrazine from water in a cycle of dispersion into a water sample, adsorption of the atrazine onto the MCNTs, collection by magnetic attraction and regeneration by ethanol. The resulting MCNTs show high adsorption capacities (> 40 mg-atrazine/g), high magnetic response, and straightforward regeneration. The method presented here is simpler, faster, and substantially reduces chemical waste relative to current techniques and the resulting MCNTs are promising adsorbents for organic/chemical contaminants in environmental waters

    Investigation of a Monturaqui Impactite by Means of Bi-Modal X-ray and Neutron Tomography

    Get PDF
    X-ray and neutron tomography are applied as a bi-modal approach for the 3D characterisation of a Monturaqui impactite formed by shock metamorphism during the impact of an iron meteorite with the target rocks in the Monturaqui crater (Chile). The particular impactite exhibits structural heterogeneities on many length scales: its composition is dominated by silicate-based glassy and crystalline materials with voids and Fe/Ni-metal and oxihydroxides particles generally smaller than 1 mm in diameter. The non-destructive investigation allowed us to apply a novel bi-modal imaging approach that provides a more detailed and quantitative understanding of the structural and chemical composition compared to standard single mode imaging methods, as X-ray and neutron interaction with matter results in different attenuation coefficients with a non-linear relation. The X-ray and neutron data sets have been registered, and used for material segmentation, porosity and metallic content characterization. The bimodal data enabled the segmentation of a large number of different materials, their morphology as well as distribution in the specimen including the quantification of volume fractions. The 3D data revealed an evaporite type of material in the impactite not noticed in previous studies. The present study is exemplary in demonstrating the potential for non-destructive characterisation of key features of complex multi-phase objects such as impactites

    Multiproxy analysis of a new terrestrial and a marine Cretaceous–Paleogene (K–Pg) boundary site from New Zealand

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 75 (2011): 657-672, doi:10.1016/j.gca.2010.10.016.An integrated study of palynology, Mössbauer spectroscopy, mineralogy and osmium isotopes has led to the detection of the first K-Pg boundary clay layer in a Southern Hemisphere terrestrial setting. The K-Pg boundary layer was independently identified at centimetre resolution by all the above mentioned methods at the marine K-Pg boundary site of mid-Waipara and the terrestrial site of Compressor Creek (Greymouth coal field), New Zealand. Mössbauer spectroscopy shows an anomaly of Fe-containing particles in both K-Pg boundary sections: jarosite at mid-Waipara and goethite at Compressor Creek. This anomaly coincides with a turnover in vegetation indicated by an interval dominated by fern spores and extinction of key pollen species in both sections. In addition to the terrestrial floristic changes, the mid-Waipara section reveals a turnover in the dinoflagellate assemblages and the appearance of global earliest Danian index species. Geochemical data reveal relatively small iridium enrichments in the boundary layers of 321 pg/g at mid-Waipara and 176 pg/g at Compressor Creek. Unradiogenic 187Os/188Os values of the boundary clay reveal the presence of a significant extraterrestrial component. We interpret the accumulation of Fe nano-phases at the boundary as originating from both the impactor and the crystalline basement target rock. The goethite and jarosite are interpreted as secondary phases formed by weathering and diagenesis. The primary phases were probably controlled by the initial composition of the vapor plume and condensation kinetics rather than condensation thermodynamics. This investigation indicates that identification of Fe in nano-phases by Mössbauer spectroscopy is an accurate and cost-effective method for identifying impact event horizons and it efficiently complements widely used biostratigraphic and geochemical methods.V. Vajda acknowledges the financial support provided by the Swedish Royal Academy of Sciences through the Knut & Alice Wallenbergs Foundation and from the Crafoord Foundation. P.S. Willumsen acknowledges financial support from the Carlsberg Foundation no.2008_01_0404

    Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer.

    Get PDF
    PMC3648524Triple negative breast cancers (TNBC) are difficult to treat due to a lack of targets and heterogeneity. Inhibition of angiogenesis is a promising therapeutic strategy, but has had limited effectiveness so far in breast cancer. To quantify heterogeneity in angiogenesis-related gene expression in breast cancer, we focused on two families--VEGFs and semaphorins--that compete for neuropilin co-receptors on endothelial cells. We compiled microarray data for over 2,600 patient tumor samples and analyzed the expression of VEGF- and semaphorin-related ligands and receptors. We used principal component analysis to identify patterns of gene expression, and clustering to group samples according to these patterns. We used available survival data to determine whether these clusters had prognostic as well as therapeutic relevance. TNBC was highly associated with dysregulation of VEGF- and semaphorin-related genes; in particular, it appeared that expression of both VEGF and semaphorin genes were altered in a pro-angiogenesis direction. A pattern of high VEGFA expression with low expression of secreted semaphorins was associated with 60% of triple-negative breast tumors. While all TNBC groups demonstrated poor prognosis, this signature also correlated with lower 5-year survival rates in non-TNBC samples. A second TNBC pattern, including high VEGFC expression, was also identified. These pro-angiogenesis signatures may identify cancers that are more susceptible to VEGF inhibition.JH Libraries Open Access Fun

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore